Joint Group Papers

In preparation

Australian Prostate Cancer Group

  • Hong MKH, Macintyre G, Wedge DC, et al. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat Commun 2015;6:6605. doi:10.1038/ncomms7605

Canadian Prostate Cancer Genome Network (CPC-GENE)

  • Espiritu SMG, Liu LY, Rubanova Y, et al. The Evolutionary Landscape of Localized Prostate Cancers Drives Clinical Aggression. Cell 2018;:1–11. doi:10.1016/j.cell.2018.03.029
  • Chua MLK, Lo W, Pintilie M, et al. A Prostate Cancer ‘Nimbosus’: Genomic Instability and SChLAP1 Dysregulation Underpin Aggression of Intraductal and Cribriform Subpathologies. Eur Urol 2017;72:665–74. doi:10.1016/J.EURURO.2017.04.034
  • Fraser M, Sabelnykova VY, Yamaguchi TN, et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature Published Online First: 2017. doi:10.1038/nature20788
  • Hopkins JF, Sabelnykova VY, Weischenfeldt J, et al. Mitochondrial mutations drive prostate cancer aggression. Nat Commun 2017;8:656. doi:10.1038/s41467-017-00377-y
  • Lalonde E, Alkallas R, Chua MLK, et al. Translating a Prognostic DNA Genomic Classifier into the Clinic: Retrospective Validation in 563 Localized Prostate Tumors. Eur Urol 2017;72:22–31. doi:10.1016/j.eururo.2016.10.013
  • Taylor RA, Fraser M, Livingstone J, et al. Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat Commun 2017;8:13671. doi:10.1038/ncomms13671
  • Guo H, Ahmed M, Zhang F, et al. Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer. Nat Genet 2016;48:1142–50. doi:10.1038/ng.3637
  • Kim Y, Jeon J, Mejia S, et al. Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer. Nat Commun 2016;7:11906. doi:10.1038/ncomms11906
  • Boutros PC, Fraser M, Harding NJ, et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet 2015;47:736–45. doi:10.1038/ng.3315
  • Chong LC, Albuquerque MA, Harding NJ, et al. SeqControl: process control for DNA sequencing. Nat Methods 2014;11:1071–5. doi:10.1038/nmeth.3094
  • Lalonde E, Ishkanian AS, Sykes J, et al. Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort study. Lancet Oncol 2014;15:1521–32. doi:10.1016/s1470-2045(14)71021-6

CRUK-ICGC and Finnish Prostate Cancer Group

  • Wedge DC, Gundem G, Mitchell T, et al. Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nat Genet 2018;50:682–92. doi:10.1038/s41588-018-0086-z
  • Camacho N, Van Loo P, Edwards S, et al. Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genet 2017;13:e1007001. doi:10.1371/journal.pgen.1007001
  • Behjati S, Gundem G, Wedge DC, et al. Mutational signatures of ionizing radiation in second malignancies. Nat Commun 2016;7. doi:10.1038/ncomms12605
  • Gundem G, Van Loo P, Kremeyer B, et al. The evolutionary history of lethal metastatic prostate cancer. Nature 2015;520:353–7. doi:10.1038/nature14347
  • Cooper CS, Eeles R, Wedge DC, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet 2015;47:367–72. doi:10.1038/ng.3221
  • Massie CE, Spiteri I, Ross-Adams H, et al. HES5 silencing is an early and recurrent change in prostate tumourigenesis. Endocr Relat Cancer 2015;22:131–44. doi:10.1530/ERC-14-0454
  • Ju YS, Tubio JMC, Mifsud W, et al. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Res 2015;25:814–24. doi:10.1101/gr.190470.115
  • Ju YS, Alexandrov LB, Gerstung M, et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife 2014;3:1–28. doi:10.7554/eLife.02935
  • Tubio JMC, Li Y, Ju YS, et al. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science (80- ) 2014;345:1251343–1251343. doi:10.1126/science.1251343

Garvan Human Comparative & Prostate Cancer Genomics (Garvan-HCPCG)

  • Jaratlerdsiri W, Chan EKF, Gong T, et al. Whole Genome Sequencing Reveals Elevated Tumor Mutational Burden and Initiating Driver Mutations in African Men with Treatment-Naive, High-Risk Prostate Cancer. Cancer Res 2018;:canres.0254.2018. doi:10.1158/0008-5472.CAN-18-0254
  • McCrow JP, Petersen DC, Louw M, et al. Spectrum of mitochondrial genomic variation and associated clinical presentation of prostate cancer in South African men. Prostate 2016;76:349–58. doi:10.1002/pros.23126

Germany ICGC Prostate Cancer Group - Early Onset

  • Hopkins JF, Sabelnykova VY, Weischenfeldt J, et al. Mitochondrial mutations drive prostate cancer aggression. Nat Commun 2017;8:656. doi:10.1038/s41467-017-00377-y
  • Brocks D, Assenov Y, Minner S, et al. Intratumor DNA Methylation Heterogeneity Reflects Clonal Evolution in Aggressive Prostate Cancer. Cell Rep 2014;8:798–806. doi:10.1016/J.CELREP.2014.06.053
  • Gu L, Frommel SC, Oakes CC, et al. BAZ2A (TIP5) is involved in epigenetic alterations in prostate cancer and its overexpression predicts disease recurrence. Nat Genet 2014;47:22–30. doi:10.1038/ng.3165
  • Weischenfeldt J, Simon R, Feuerbach L, et al. Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell 2013;23:159–70. doi:10.1016/j.ccr.2013.01.002

TCGA Prostate Cancer Group

  • Tyekucheva S, Bowden M, Bango C, et al. Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer. Nat Commun 2017;8:420. doi:10.1038/s41467-017-00460-4
  • Cancer Genome Atlas Research Network. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015;163:1011–25. doi:10.1016/j.cell.2015.10.025