Joint Group Papers

  • Burns D, Anokian E, Saunders EJ, Bristow RG, Fraser M, Reimand J, et al. Rare Germline Variants Are Associated with Rapid Biochemical Recurrence After Radical Prostate Cancer Treatment: A Pan Prostate Cancer Group Study. European Urology. 2022 Aug;82(2):201–11. Available from:

Australian Prostate Cancer Group

Canadian Prostate Cancer Genome Network (CPC-GENE)

  • Gerstung M, Jolly C, Leshchiner I, et el. The evolutionary history of 2,658 cancers. Nature [Internet]. 2020 Feb 6 578(7793):122–8.
  • Sinha A, Huang V, Livingstone J, et el. The Proteogenomic Landscape of Curable Prostate Cancer. Cancer Cell. 2019;35(3):414-427.e6.
  • Houlahan KE, Shiah YJ, Gusev A, et el. Genome-wide germline correlates of the epigenetic landscape of prostate cancer. Nat Med 2019 Oct 1 25(10):1615–26.
  • Mazrooei P, Kron KJ, Zhu Y, et el. Cistrome Partitioning Reveals Convergence of Somatic Mutations and Risk Variants on Master Transcription Regulators in Primary Prostate Tumors. Cancer Cell 2019 Dec 9;36(6):674-689.e6.
  • Chen S, Huang V, Xu X, et el. Widespread and Functional RNA Circularization in Localized Prostate Cancer. Cell 2019 Feb 7; 176(4):831-843.e22.
  • Böttcher R, Kweldam CF, Livingstone J, et el. Cribriform and intraductal prostate cancer are associated with increased genomic instability and distinct genomic alterations. BMC Cancer 2018 Jan 2;18(1).
  • Espiritu SMG, Liu LY, Rubanova Y, et al. The Evolutionary Landscape of Localized Prostate Cancers Drives Clinical Aggression. Cell 2018;:1–11. doi:10.1016/j.cell.2018.03.029
  • Chua MLK, Lo W, Pintilie M, et al. A Prostate Cancer ‘Nimbosus’: Genomic Instability and SChLAP1 Dysregulation Underpin Aggression of Intraductal and Cribriform Subpathologies. Eur Urol 2017;72:665–74. doi:10.1016/J.EURURO.2017.04.034
  • Fraser M, Sabelnykova VY, Yamaguchi TN, et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature Published Online First: 2017. doi:10.1038/nature20788
  • Hopkins JF, Sabelnykova VY, Weischenfeldt J, et al. Mitochondrial mutations drive prostate cancer aggression. Nat Commun 2017;8:656. doi:10.1038/s41467-017-00377-y
  • Lalonde E, Alkallas R, Chua MLK, et al. Translating a Prognostic DNA Genomic Classifier into the Clinic: Retrospective Validation in 563 Localized Prostate Tumors. Eur Urol 2017;72:22–31. doi:10.1016/j.eururo.2016.10.013
  • Taylor RA, Fraser M, Livingstone J, et al. Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat Commun 2017;8:13671. doi:10.1038/ncomms13671
  • Guo H, Ahmed M, Zhang F, et al. Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer. Nat Genet 2016;48:1142–50. doi:10.1038/ng.3637
  • Kim Y, Jeon J, Mejia S, et al. Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer. Nat Commun 2016;7:11906. doi:10.1038/ncomms11906
  • Boutros PC, Fraser M, Harding NJ, et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet 2015;47:736–45. doi:10.1038/ng.3315
  • Chong LC, Albuquerque MA, Harding NJ, et al. SeqControl: process control for DNA sequencing. Nat Methods 2014;11:1071–5. doi:10.1038/nmeth.3094
  • Lalonde E, Ishkanian AS, Sykes J, et al. Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort study. Lancet Oncol 2014;15:1521–32. doi:10.1016/s1470-2045(14)71021-6

CRUK-ICGC and Finnish Prostate Cancer Group

  • Buhigas C, Warren AY, Leung WK, Whitaker HC, Luxton HJ, Hawkins S, et al. The architecture of clonal expansions in morphologically normal tissue from cancerous and non-cancerous prostates. Molecular Cancer. 2022 Sep 22;21(1):183. Available from:
  • Wedge DC, Gundem G, Mitchell T, et al. Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nat Genet 2018;50:682–92. doi:10.1038/s41588-018-0086-z
  • Camacho N, Van Loo P, Edwards S, et al. Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genet 2017;13:e1007001. doi:10.1371/journal.pgen.1007001
  • Behjati S, Gundem G, Wedge DC, et al. Mutational signatures of ionizing radiation in second malignancies. Nat Commun 2016;7. doi:10.1038/ncomms12605
  • Gundem G, Van Loo P, Kremeyer B, et al. The evolutionary history of lethal metastatic prostate cancer. Nature 2015;520:353–7. doi:10.1038/nature14347
  • Cooper CS, Eeles R, Wedge DC, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet 2015;47:367–72. doi:10.1038/ng.3221
  • Massie CE, Spiteri I, Ross-Adams H, et al. HES5 silencing is an early and recurrent change in prostate tumourigenesis. Endocr Relat Cancer 2015;22:131–44. doi:10.1530/ERC-14-0454
  • Ju YS, Tubio JMC, Mifsud W, et al. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Res 2015;25:814–24. doi:10.1101/gr.190470.115
  • Ju YS, Alexandrov LB, Gerstung M, et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife 2014;3:1–28. doi:10.7554/eLife.02935
  • Tubio JMC, Li Y, Ju YS, et al. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science (80- ) 2014;345:1251343–1251343. doi:10.1126/science.1251343

Danish Aarhus University Hospital Prostate Cancer Group

  • Salachan PV, Sørensen KD. Dysbiotic microbes and how to find them: a review of microbiome profiling in prostate cancer. Journal of Experimental & Clinical Cancer Research. 2022 Jan 22;41(1):31. Available from:
  • Salachan PV, Rasmussen M, Fredsøe J, Ulhøi B, Borre M, Sørensen KD. Microbiota of the prostate tumor environment investigated by whole-transcriptome profiling. Genome Medicine. 2022 Jan 25;14(1):9. Available from:
  • Ipsen MB, Sørensen EMG, Thomsen EA, Weiss S, Haldrup J, Dalby A, et al. A genome-wide CRISPR-Cas9 knockout screen identifies novel PARP inhibitor resistance genes in prostate cancer. Oncogene. 2022 Sep;41(37):4271–81.
  • Hansen EB, Fredsøe J, Okholm TLH, Ulhøi BP, Klingenberg S, Jensen JB, et al. The transcriptional landscape and biomarker potential of circular RNAs in prostate cancer. Genome Medicine. 2022 Jan 25;14(1):8. Available from:
  • Andersen LB, Nørgaard M, Rasmussen M, Fredsøe J, Borre M, Ulhøi BP, et al. Immune cell analyses of the tumor microenvironment in prostate cancer highlight infiltrating regulatory T cells and macrophages as adverse prognostic factors. The Journal of Pathology. 2021;255(2):155–65. Available from:
  • Haldrup J, Strand SH, Cieza-Borrella C, et al. FRMD6 has tumor suppressor functions in prostate cancer. Oncogene. 2020;
  • Nørgaard M, Haldrup C, Bjerre MT, et al. Epigenetic silencing of MEIS2 in prostate cancer recurrence. Clin Epigenetics. 2019 Oct 22;11(1).
  • Schmidt L, Møller M, Haldrup C, et al. Exploring the transcriptome of hormone-naive multifocal prostate cancer and matched lymph node metastases. Br J Cancer. 2018 Dec 11;119(12):1527–37.
  • Møller M, Strand SH, Mundbjerg K, et al. Heterogeneous patterns of DNA methylation-based field effects in histologically normal prostate tissue from cancer patients. Sci Rep. 2017 Jan 13;7.
  • Strand SH, Switnicki M, Moller M, et al. RHCG and TCAF1 promoter hypermethylation predicts biochemical recurrence in prostate cancer patients treated by radical prostatectomy. Oncotarget. 2017;8(4):5774–88.

French ICGC Prostate Cancer Group

  • Tonon L, Fromont G, Boyault S, et al. Mutational Profile of Aggressive, Localised Prostate Cancer from African Caribbean Men Versus European Ancestry Men. Eur Urol. 2019 Jan 1;75(1):11–5.
  • Kamoun A, Cancel-Tassin G, Fromont G, et al. Comprehensive molecular classification of localized prostate adenocarcinoma reveals a tumour subtype predictive of non-aggressive disease. Ann Oncol. 2018;29(8):1814–21.

Sydney-African prostate cancer research group

  • Jaratlerdsiri W, Jiang J, Gong T, Patrick SM, Willet C, Chew T, et al. African-specific molecular taxonomy of prostate cancer. Nature. 2022 Sep;609(7927):552–9. Available from:
  • Gong T, Jaratlerdsiri W, Jiang J, Willet C, Chew T, Patrick SM, et al. Genome-wide interrogation of structural variation reveals novel African-specific prostate cancer oncogenic drivers. Genome Medicine. 2022 Aug 31;14(1):100. Available from:
  • Crumbaker M, Chan EKF, Gong T, Corcoran N, Jaratlerdsiri W, Lyons RJ, et al. The Impact of Whole Genome Data on Therapeutic Decision-Making in Metastatic Prostate Cancer: A Retrospective Analysis. Cancers. 2020 May 7;12(5):1178. Available from:
  • Feng Y, Jaratlerdsiri W, Patrick SM, Lyons RJ, Haynes A, Collins CC, et al. Metagenomic analysis reveals a rich bacterial content in high‐risk prostate tumors from African men. Prostate. 2019 Nov;79(15):1731–8. Available from:
  • Blackburn J, Vecchiarelli S, Heyer EE, Patrick SM, Lyons RJ, Jaratlerdsiri W, et al. TMPRSS2‐ERG fusions linked to prostate cancer racial health disparities: A focus on Africa. Prostate. 2019 Jul;79(10):1191–6. Available from:
  • Kalsbeek AMF, Chan EKF, Grogan J, Petersen DC, Jaratlerdsiri W, Gupta R, et al. Altered mitochondrial genome content signals worse pathology and prognosis in prostate cancer. Prostate. 2018 Jan;78(1):25–31. Available from:
  • Jaratlerdsiri W, Chan EKF, Gong T, et al. Whole Genome Sequencing Reveals Elevated Tumor Mutational Burden and Initiating Driver Mutations in African Men with Treatment-Naive, High-Risk Prostate Cancer. Cancer Res 2018;:canres.0254.2018. doi:10.1158/0008-5472.CAN-18-0254
  • McCrow JP, Petersen DC, Louw M, et al. Spectrum of mitochondrial genomic variation and associated clinical presentation of prostate cancer in South African men. Prostate 2016;76:349–58. doi:10.1002/pros.23126

Germany ICGC Prostate Cancer Group - Early Onset

  • Gerhauser C, Favero F, Risch T et al. Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. Cancer Cell 2018;34(6):996-1011.e8. doi: 10.1016/j.ccell.2018.10.016
  • Hopkins JF, Sabelnykova VY, Weischenfeldt J, et al. Mitochondrial mutations drive prostate cancer aggression. Nat Commun 2017;8:656. doi:10.1038/s41467-017-00377-y
  • Brocks D, Assenov Y, Minner S, et al. Intratumor DNA Methylation Heterogeneity Reflects Clonal Evolution in Aggressive Prostate Cancer. Cell Rep 2014;8:798–806. doi:10.1016/J.CELREP.2014.06.053
  • Gu L, Frommel SC, Oakes CC, et al. BAZ2A (TIP5) is involved in epigenetic alterations in prostate cancer and its overexpression predicts disease recurrence. Nat Genet 2014;47:22–30. doi:10.1038/ng.3165
  • Weischenfeldt J, Simon R, Feuerbach L, et al. Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell 2013;23:159–70. doi:10.1016/j.ccr.2013.01.002

TCGA Prostate Cancer Group

  • Tyekucheva S, Bowden M, Bango C, et al. Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer. Nat Commun 2017;8:420. doi:10.1038/s41467-017-00460-4
  • Cancer Genome Atlas Research Network. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015;163:1011–25. doi:10.1016/j.cell.2015.10.025